A Fuzzy Logic Controller for Synchronous Machine

نویسندگان

  • Abdel Ghani Aissaoui
  • Mohamed Abid
  • Hamza Abid
  • Ahmed Tahour
  • Abdel kader Zeblah
چکیده

Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. This paper presents an application of fuzzy logic to control the speed of a synchronous machine (SM). Based on the analysis of the SM transient response and fuzzy logic, a fuzzy controller is developed. The fuzzy controller generates the variations of the reference current vector of the SM speed control based on the speed error and its change. Digital simulation results shows that the designed fuzzy speed controller realises a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the fuzzy logic controller to a SM give best performances and high robustness than those obtained by the application of a conventional controller (PI).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive and intelligent control of permanent magnet synchronous motor (PMSM) using a combination of fuzzy logic and gray wolf algorithm under fault condition

Nowadays, permanent magnet synchronous motors have been widely used in industry due to the elimination of excitation losses, longer life and higher efficiency. Errors in engine and drive systems are unavoidable during operation. Therefore, a suitable scenario should be considered for when these systems fail. If the necessary predictions and control algorithms are not considered for the error co...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

A Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System

Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...

متن کامل

Enhancement of Transient Stability of Multi Machine Power System Using SSSC With Fuzzy Logic Power Oscillations Damping Controller

The Static Synchronous Series Compensator (SSSC) is one of the powerful Flexible AC Transmission System (FACTS) controller recognized for power flow, power oscillation damping and improving transient stability. This paper proposes controller that is a combination of Fuzzy Logic Power Oscillations Damping (FLPOD) controller with Proportional and Integral Power Flow (PIPF) controller for SSSC to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007